An efficient fuzzy classifier with feature selection based on fuzzy entropy
نویسندگان
چکیده
This paper presents an efficient fuzzy classifier with the ability of feature selection based on a fuzzy entropy measure. Fuzzy entropy is employed to evaluate the information of pattern distribution in the pattern space. With this information, we can partition the pattern space into nonoverlapping decision regions for pattern classification. Since the decision regions do not overlap, both the complexity and computational load of the classifier are reduced and thus the training time and classification time are extremely short. Although the decision regions are partitioned into nonoverlapping subspaces, we can achieve good classification performance since the decision regions can be correctly determined via our proposed fuzzy entropy measure. In addition, we also investigate the use of fuzzy entropy to select relevant features. The feature selection procedure not only reduces the dimensionality of a problem but also discards noise-corrupted, redundant and unimportant features. Finally, we apply the proposed classifier to the Iris database and Wisconsin breast cancer database to evaluate the classification performance. Both of the results show that the proposed classifier can work well for the pattern classification application.
منابع مشابه
SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملA Clustering Based Feature Subset Selection Algorithm for High-Dimensional Microarray Data Using Fuzzy Entropy with Neuro-Fuzzy Classifier
Feature selection involves the process of selecting a subset of relevant features that produces the result as the original set of features. The central assumption of using a feature selection technique in high dimensional data is that the data may contain many redundant or irrelevant features. Microarray dataset may also contain a huge number of redundant (insignificant) and irrelevant features...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA research on classification performance of fuzzy classifiers based on fuzzy set theory
Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...
متن کاملUncertainty measures for fuzzy relations and their applications
Relations and relation matrices are important concepts in set theory and intelligent computation. Some general uncertainty measures for fuzzy relations are proposed by generalizing Shannon’s information entropy. Then, the proposed measures are used to calculate the diversity quantity of multiple classifier systems and the granularity of granulated problem spaces, respectively. As a diversity me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2001